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A fluid-filled cylindrical shell comprising a wall joint is investigated by using the
concept of vibrational power flow. The power flow in the contained fluid and in the
shell wall of this fluid-filled elastic cylindrical shell is studied. The transmission loss
of vibrational power flow through the wall joint is studied and an analysis of power
flow transmission and reflection at the joint in fluid-filled shells is presented.
Material stiffness of the joint and frequency are two important factors that are
found to strongly influence the results. It is hoped that the analysis will shed some
light on the control of vibrational propagation in shells filled with fluid.
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1. INTRODUCTION

Piping systems conveying fluid are used widely in many defense and industrial
applications. Besides transmitting useful quantities, piping systems often transmit
unwanted energy in the form of structural and acoustical vibrations. Because it can
reflect a part of the incident wave and thus reduce the amplitude of the transmitted
vibration, the wall joint is commonly used to control noise and vibration in
practical engineering applications. In recent years, the concept of vibrational power
flow has been widely used to evaluate the capacity of some isolating devices because
it combines both the force and the velocity at the same time. Hence it is
a fundamental topic to predict the influence of the wall joint on vibrational power
flow transmission.

Discontinuities of various forms have been studied by many previous authors.
Wave propagation in shells with a wall joint has been studied by Harari [1]. The
discontinuity considered consists of a spring-type rubber insert and the results
obtained show high power reflection coefficients at the cut-on frequencies of
various torsional waves. Harari [2] has also investigated the related problem of
travelling waves encountering a ring stiffener attached to the shell wall. Fuller [3]
has investigated the effects of discontinuities in the wall of a cylindrical shell in
vacuo on travelling flexural waves. Xu et al. [4] studied not only the amplitude, but
also the angle of the reflection coefficient.

Due to the coupling between the structure and the fluid, it is much more difficult
to investigate fluid-filled shells. During recent years, a lot of attention has been paid
to coupled fluid-shell systems. Fuller and Fahy [5] performed an analysis
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of dispersion curves and energy distributions between the shell and the contained
fluid for a single-mode travelling with circumferential modal number n =0, 1
in a fluid-filled elastic pipe. The problem of mechanical excitation of the shell
wall has also been considered in a paper by Fuller [6], in which the input mobility
and energy distributions in a fluid-filled infinite cylindrical shell were evaluated for
line and point-driving forces applied to the shell wall. The propagation of
vibrational waves through wall discontinuities in a water-filled shell has been
considered by Xu et al. [7]. The results were also compared with those of a shell in
vacuo.

In this paper, an analysis of wave transmission and reflection at the wall joint in
fluid-filled shells is presented. Because reflection of the wall joint is the main reason
for reducing wave propagation in this article, the damping of the joint material is
ignored. The power transmission is used to evaluate the role of the joint. The results
in this paper provide theoretical guidance on reducing noise and vibration in piping
systems conveying fluid.

2. FREE WAVE PROPAGATION OF THIS COUPLED SYSTEMS

The co-ordinate system and the modal shapes are shown in Figure 1.
The vibrational motion of the shell can be described by the Fliigge shell equations
as
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Figure 1. Co-ordinate system and modal shapes.
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In these equations, u, v and w are shell displacements in the x, 6 and r directions,
respectively, R is the shell mean radius, & is the shell thickness, u is the Poisson
ratio, p is the density of the shell material, E is the Young’s modulus,
Ox = R(3()/0x), ()g = 0()/00, (), = d()/dt, K is the thickness factor, K = h?/12R?,
py is the pressure of the contained fluid.

The solutions of equation (1), in discrete form, can be expresed as

u(x,0) = Y, u(x)cos(nd) = Y > U, cos(nd)exp(iot + kyx),
n=0 s=1n=0

v(x,0) = > v(x)sin(nf) = Z Vs sin(nb) exp(iot + k,sx), )
n=0 s=1n=0

Z w(x) cos(nf) = Z Z W, cos(nb) exp(imt + k,sx).

s=1n=0

The associated form of the pressured field in the contained fluid, which satisfies
the acoustic wave equation, is given as

i x) cos(nb) = Z i P, cos(n0) J,(kir)exp(iot + k,ex),  (3)

s=1n=0

when n is the circumferential modal number, s denotes a particular branch of the
dispersion curves, w is the driving frequency, J,() is Bessel function of order n.
k., and ki are the axial and radial wavenumbers, respectively. The radial
wavenumber kj is related to the axial wavenumber k,, by the usual vector relation
(KiR)* = Q*(C./C,)* — (kusR)?, where Q is the non-dimensional frequency, and
Cr and C; are the wave speed in the shell and in the fluid, respectively.
Application of the fluid momentum equation at the shell wall, »r = R, results in

Pns = [wzpf/k;J;t(k;R)] Wnsa (4)
where p is the density of the contained fluid and the prime denotes differentiation
with respect to the argument kiR.

Substitution of equations (2)-(4) into the shell equations (1) results in the
equations of motion of the coupled system in symmetric matrix form:

[L3><3][Uns Vns Wns]T = [0 0 O]Ta (5)
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P 4ad b'A A3 +da U, 0
elﬂvl +f/ g//«LZ + h/ Vns _ 0 ’ (6)
JHKAZ+ U2 —FL LW, 0
A=kyRod = —(1—p(1+Kn?2+ Q% b'=(1+pn2, =-K,
d=p—K(1—wn?2, ¢=—1—wl+3K)2, [ =n—a
g=—CB-wKn2 K=n j=1+Kn 17—, k= —2K, (1)

I'=K, Q%=pR*0*(1— p?)/E,

where F L is the fluid loading term due to the presence of the fluid acoustic field and
is given by

FL = Q%(ps/ps)(h/R)™ " (kg R)™ ' [J(kiR)/ T (KSR)]. t)

Expansion of the determinant of the amplitude coefficient in equation (5)
provides the system characteristic equation

Py(4) — P,(A)FL =0, )

where both P, (1) and P, (/) are polynomial. For the sake of brevity, the coefficients
are not given here.

Due to the “non-linearity” of the equation, numerical methods have to be
employed to find the desired eigenvalues. The eigenvalues will be either pure real,
pure imaginary or complex. The pure real and imaginary roots can be found by the
method of bisection. Newton’s downhill method and the plane grille searching
method are combined to find the complex roots. For each circumferential modal
number n, these wavenumbers /4 can be separated into two groups. The first group
contains backward waves associated with a semi-infinite shell, — oo < x < 0 (left
side), excited at the edge at x = 0. The second group describes forward waves
associated with a semi-infinite shell, 0 < x < co (right side), excited at the edge at
x=0. If 4 is pure real or pure imaginary, one obtains a near-field wave or
a propagating wave, respectively. If 4 is complex is conjugate pairs, one obtains an
atenuated standing wave, which means that the wave amplitudes decay in one
direction but the waves propagate in both directions.

By substituting the roots back into equation (5), the characteristic vectors are
obtained as
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Uns _ L12L23 - L13L22
Wns L11L22 - L12L21
Vns — L21L13 - L11L23
Wns L11L22 - L12L21

¢ns =

for n > 0. (10)

Pus =

As n = 0, the torsional mode of the shell is uncoupled from all other motions and
has been omitted. @,, and ¥, characterize the particular type of wave motion,
giving the ratio of longitudinal and circumferential displacements to the flexural
displacement.

3. POWER FLOW IN THIS COUPLED SYSTEM

When waves propagate through this fluid-filled shell, there will be vibrational
power flow in the shell wall and the contained fluid.

3.1. POWER FLOW IN THE CONTAINED FLUID

The fluid field can be described by the usual pressure solution in cylindrical
coordinates for a particular circumferential mode n as

S
p= )Y, Pycos(nd)J,(kir) exp(iot + k,x), (11)

s=1

where S is the total number of propagating waves.
The axial acoustic particle velocity can be obtained from the momentum relation

v, = __1 @ (12)
ipw 0x
Thus the axial velocity is
Sk
Uy = Y, —= P, cos(n0)J,(kir) exp(iot + kyx). (13)
s=1 pfw
Acoustic power intensity in the axial direction is expressed as

1 al Pns kns 2 2

1(0,r, 1) =z Re al(pv¥) = — cos”(n0)J; (kir), (14)
2 s=1 2 pfw

where * denotes the complex conjugate.
Then the total power flow in the contained fluid Py, is obtained by integrating
the power intensity given by equation (14) flowing through an element of area
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dA = rd0dr over the cross-sectional area of the fluid field. The power flow P/, 1s

2n R S 2n R P2 k
Priia = f f 10,r,0)dA = ), f f —= " cos?(n0)JE(Kir)rd0dr (15)
o Jo s=1Jo Jo 2 pyo

[ 2 K 2
=7 P,,Sknsf J2(Kr)rdr, 16
2pfa) szl 0 ( ) ( )

where 7, = 2 when n =0, and #, = 1 when n > 0.

As discussed in section 2, by application of the boundary condition at the shell
wall, the power in the contained fluid can be written in terms of the shell radial
amplitude W,,. Substituting equation (4) into equation (16) result in

3 S R
Poua =" Y WKL IRARN [ S )
=1 0

s=

The integral in equation (17) takes the form of Lommel’s integral, the solution of
which can be written as [§]

R 201k NP2 /DY 2 n? 201r
L Jr(Kir)rdr = 0-5R {[J,,(kSR)] +<1 —(k;—R)Z>J,,(kSR)}. (18)

Then the power flow in the contained fluid can be obtained easily.

3.2. POWER FLOW IN THE SHELL WALL

When there are propagating waves in this fluid-shell system, there will exist four
forces of the cylindrical shell section in the axial direction. These forces for
a particular circumferential mode n can easily be derived from the exact Fliigge
shell equations as

S
Ny = Z NusW s COS(nH)eknstriwz,

s=1
S .
I.= Z T W s SiI](nQ)ekm-x+1wz7
s=1

S
Sy =Y S,W,scos(nf)ek~>*io (19)

s=1

S
M= Z M, W Sin(n@)ekmx+iwt’

s=1
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where W is the amplitude of the flexural displacement, N,, T,, S, and M, are the
axial force, torsional shear force, transverse shear force and bending moment in the
x direction, respectively, and can be written as

D
an = ﬁ [qsns;“ns + UnQ,s + 1 — K/lr%s >

(—p
2

D
Tns = E [ - n(,bns + (1 + 3K)(pnsj~ns + 3Kn)"ns:|a

D
Sns = ﬁ K[(lr?s - ,unzins - d)nS;erlS - .un(pnsj'ns)

- (1 - :u)(znz/lns + %nz(ﬁns + %nq)nsins)]a
Mns = DK [}“rzls - ,un2 - ¢ns)~ns - .un(pns]s

h? Eh

K=——>, D= .
12R?’ (1 — i3

The power flows in the shell wall at the section, transmitted by these forces, are
given as

P, =05, Re[iwN u*],
P,. = 0-5n,n Re[iow T v*], (20)

Py, = 0-51,7 Re[iwS w*],
. ow*

Py = 0-50,7 Re |:1wa l}
ox

Then the total power in the shell wall is

Pshell:an+Ptx+Psx+me~ (21)

3.3. TOTAL POWER FLOW IN THE COUPLED SYSTEM

When waves propagate through this coupled system, the total power flow is the
sum of the power both in the shell and in the contained fluid. Then,

Piotat = Ppens + P rruia- (22)
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4. THE EFFECT OF WALL JOINT ON THE POWER PROPAGATION

The shell conveying fluid with a wall joint is shown in Figure 2. The material of
the shell is steel, the wall joint is made of hard rubber, and the fluid is water. When
there is an incident propagating wave in region (a), the joint will reflect some power
carried by the incident wave, and thus the power carried by the transmitted wave in
region (c) is less than the incident power in region (a) and the vibration can be
reduced. All local effects of a discontinuity in wall thickness such as local stress
concentrations are ignored. This approximation is justified by the initial
assumption that the wall thickness is very small compared to the shell radius and
the thickness parameter is retained only in flexural terms of the characteristic
equation.

The discontinuity is to be analyzed by dividing the shell into sections as in Figure
2 and considering wave propagation and reflection in each. The wave incident on
the joint is assumed to be a propagating wave s =1 for various values of
circumferential mode n. Theoretically, a single incident wave of mode order n will
generate infinite reflected waves or (and) transmitted waves in regions (a)—(c) with
an identical mode order. The boundary conditions (BC) at each discontinuity in the
wall of the shell will include the continuity of angular bending velocity, radial, axial
and tangential velocity, and the continuity of angular bending moment, transverse
shear, axial force and torsional shear. In the fluid, BC will include the continuity of
pressure p and axial velocity v, at every point of the interfaces A and B. Thus the
number of BC will be infinite in theory and cannot be satisfied in reality.

To the vibration waves, only the lower order types will be considered. That is, all
the propagating waves and attenuated standing waves will be included. As for the
near-field waves, only those with small wavenumbers will be included.

The BC in the shell wall and the mean value of p and v, in the contained fluid will
be included first. The continuity of p and v, at some points of the interface 4 and
B (for example r = 0, r = 0-5R) will also be included as boundary conditions. Then
the problem will arise as to how many waves and BC have to be considered on
earth. When an incident propagating wave is reflected by the joint, the vibrational
power flow carried by the incident wave will convey into the power flow carried by
the reflected and transmitted waves. Moreover, the incident power will be equal to

Incident wave Reflected waves Reflected waves
- it -
Reflected waves Transmitted waves Transmitted waves M
- — - —_—
=== 0 A,
T ER © . _
r X k m
{ J I % ]
A
hl A |- L B

Figure 2. Arrangement of the wall joint.
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the sum of the reflected and the transmitted power. According to the principle of
energy conversation, we can decide the number of waves and BC.

At interfaces A and B, for example, the continuity of radial velocity of the shell
wall provides an equation

S S S
(— ;“;+ZW:,2> =<—zw;z+zwzz> )
s=1 A:x=0 s=1 s=1 A:x=0
S S S
(z we_ S W;z> =<z Wz:s> | 24)
s=1 s=1 B:x=1 s=1 B:x=1

where the amplitude of the incident wave is assumed to be unity and S is the total
number of considered waves; superscripts a, b and ¢ refer to the corresponding
sections shown in Figure 2; i, r and ¢ refer to the incident wave, reflected waves and
transmitted waves, respectively.

Similarly, by applying other boundary conditions at both interfaces 4 and B,
other equations can be provided and an equation group containing 4 x S equations
will be obtained. The 4 x § unknown complex coefficients of the 4 x S equations
were set into a 4S x 4S matrix and the unknown Fourier amplitudes were then
evaluated. Thus the main amplitude of each considered wave was obtained.

Then the power flows carried by the incident wave, transmitted waves and
reflected waves can be calculated. The vibrational power flow carried by the
reflected and the transmitted waves is defined as

P’ =3 P, (25)
s=1
S

Pt = Z Pitcnal: (26)
s=1

The power carried by the incident wave is
Pi = izml- (27)

If the difference between P' + P" and P’ is small, the results will be correct; if
otherwise, more waves and BC have to be considered until the difference is small. In
engineering, the frequency of the wave cannot be too high, and hence it is
unnecessary to consider too many waves and BC.

The power transmission is used to investigate the effect of the wall joint and is
defined as

Tr = P'/P'. (28)
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5. RESULTS AND DISCUSSIONS

A shell conveying fluid with a wall joint is considered. The incident vibration
wave is assumed to be the first propagating wave s = 1. The material of the shell is
stell. The parameters of the shell are: the poisson ratio u = 0-3, Density
ps = 7800 kg/m?, Young’s modulus E = 1-92 x 10'! N/m?, mean radius R = 0-1 m,
thickness h/R = 0-05, the wave speed in the shell C; = 5200 m/s. The contained
fluid is water, the wave speed C, = 1500 m/s, and the density p, = 1000 kg/m">.
Several kinds of wall joints, with variations of Young’s modulus E, thickness h,/R
and length L/R, are investigated. The parameters of these wall joints are given in
Table 1.

The results and discussion about the dispersion curves of a fluid-filled shell had
been given in reference [5] and not given here for the sake of brevity. Hence only
the effect of the wall joint on the power flow transmission is given in this part.

5.1. THE EFFECT OF n = 0 ON THE TORSIONAL WAVE

When n = 0, torsional motion is uncoupled, and so the effect on the shell filled
with water will be the same as that of a shell in vacuo. See reference [4].

5.2. THE EFFECT OF n = () ON THE COUPLED WAVES

5.2.1. The power transmission with variations of Young’s modulus E of the joint

In order to evaluate the influence of Young’s modulus E on the power flow
propagation, a shell with joint A, B or C is studied. The results of power
transmission are plotted in Figure 3.

Some conclusions can be drawn. No matter what value Young’s modulus E of
the joint is, Tr = f(w) is a periodic function, which means that the Tr will decrease
and increase periodically with an increase in frequency w. When frequency w is very
low, the joint hardly reflects the incident propagating wave and thus the power flow
can transmit without loss, that is, Tr ~ 1-0 in the frequency region. But with an
increase in frequency w, Tr will decrease rapidly, which means that the wall joint

TABLE 1
Parameters of the wall joints

Joint E(N/m?) h,/R L/R p(kg/m?) U
Joint A 2:0x10° 0-05 20 1100-0 04
Joint B 40 x 10° 0-05 20 1100-0 04
Joint C 1-:0 x 10° 0-05 2:0 1100-0 0-4
Joint D 2:0x 10° 01 20 1100-0 04
Joint E 2:0 x 10° 0-025 20 1100-0 0-4
Joint F 2:0x10° 0-005 10 1100-0 0-4

Joint G 2:0x%10° 0-005 40 1100-0 0-4
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Figure 3. Power transmission Tr with variation of the Young’s modulus of the joint. E. n =0
Joint A; — - - — Joint B: - - - - Joint C.

plays a more important role in reducing the incident vibration. This can be
explained by the following reasons. The assumed incident wave s = 1 is a fluid-type
wave in low frequency, the vibrational energy of which is contained mainly in the
fluid and the fluid-filled shell vibrates in dominantly fluid motion. Thus the wall
joint (structural discontinuity) hardly reflects this incident propagating wave in this
frequency region. With the increase in frequency, the vibrational energy of the
incident wave s = 1 will be contained both in the fluid and in the shell wall. Thus
the wall joint will reflect the incident wave and Tr will decrease rapidly. By
comparing different values of Young’s modulus E, it can be found that with
a decrease in Young’s modulus E, the period of function Tr = f(w) will decrease
and the mean value of Tr will decrease also. This can be explained by the relative
stiffness of the shell and the wall joint. As the Young’s modulus E of the wall joint
decreases, the stiffness difference between the shell and the joint will increase. Thus
the wall joint will reflect the incident power more effectively and Tr will decrease
too.

5.2.2. The power transmission with variations of the thickness h,/R of the joint

The results of joints with different values of joint thickness are plotted in
Figure 4. It can be concluded that the effect of the thickness h,/R on the Tr is
similar to that of the Young’s modulus E. For the sake of brevity, the results are not
discussed further. By comparing Figure 4 with Figure 3, It can be seen that the
results of joints B and C are almost the same as those of joints D and E, respectively.

This can be explained by the definition of membrane stiffness D. Since
D = Eh/(1 — 1),

Ejpim—p = 40x 10°, h“;'g‘B =005, Ejym—c=10x10° h"’;'g‘c = 0-05,
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Figure 4. Power transmission Tr with variation of joint thickness h. n = 0. ————— Joint A;
— —-—-—Joint D; - - - - Joint E.

Power transmission Tr

0 | | | |
0 1000 2000 3000 4000 5000
Frequency rad/s
Figure 5. Power transmission Tr with variation of joint length L. n = 0. ——— Joint A;
— —-—-—Joint F; - - - - Joint G.

Ejpini—p = 2:0x10°, % =01, Ejpm—r=20x10° % = 0025,

SO Dypini—8 = Djoine—p and Djyine—c = Dyoine—g, the results of Joint B and C are
almost the same as those of joints D and E, respectively.

5.2.3. The power transmission with variations of length L/R of the joint

The results with variations of length L/R are given in Figure 5. Tr = f(w) is also
a periodic function. By comparing the results of joints 4, F and G, it can be seen
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that the period of the function Tr = f(w) will double if the length L/R of the joint
decreases from 2-0 to 10, and period will be half if the length L/R increases from 2-0 to
4-0. This means a longer joint should be chosen if the driving frequency region is wide.

5.3. THE EFFECT OF n > 0 ON THE COUPLED WAVES

When n = 1, in order to study the effect of Young’s modulus E, thickness h,/R
and length L/R, the power transmission of joints A, B, C, D, E, F and G are plotted
in Figures 6-8. The results are similar to those of n = 0 and thus not discussed
further for the sake of brevity.

Power transmission Tr

0 1000 2000 3000 4000 5000

Frequency rad/s

Figure 6. Power transmission Tr with variation of the Young’s modulus of the joint. E. n =1
Joint A; — - - — Joint B: — - - - Joint C.

Power transmission Tr

0 1000 2000 3000 4000 5000

Frequency rad/s

Figure 7. Power transmission Tr with variation of joint thickness h. n = 1. ———— Joint A;
— ——-—Joint D; - - - - Joint E.
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Power transmission Tr

0 | | | |
0 1000 2000 3000 4000 5000
Frequency rad/s
Figure 8. Power transmission Tr with variation of joint length L. n = 1. ——— Joint A;
— —-—-—Joint F; - - - - Joint G.

However, an evident difference exists between n = 0 and n > 0 when the driving
frequency is very low. For the breathing mode n = 0, the wall joint hardly reflects the
incident propagating wave and thus Tr = 1-0 in this frequency region; for other
modes (n > 0), the wall joint reflects the incident propagating wave and thus Tr < 1-0
in the same region. This difference is due to the characteristics of the incident
propagating wave. For the breathing mode n = 0, there are two propagating waves
at low frequencies; the energy of the first wave s = 1 is contained in the fluid, while
the energy of the second wave s = 2 is concentrated in the shell wall. In the analysis,
the incident wave is assumed to be the first wave s = 1, and thus the joint in the shell
wall hardly reflects the incident wave s = 1 and Tr = 1-0 in this frequency region. For
the modes n > 0, the incident propagating wave s = 1 is largely in the form of shell
wall vibration, and so the wall joint plays an important role in the controlling of the
incident vibration propagation and Tr < 1-0 in the same region.

6. CONCLUSIONS

The power transmission associated with the incident vibrational wave s = 1
impinging on various joints in the wall of a fluid—filled cylindrical shell has been
studied. From the above discussion, a conclusion can be drawn that the geometry
and physical parameters of the wall joint have significant effects on the vibrational
power flow transmission and reflection in a fluid-filled shell. When the difference of
parameters between the joint and the shell increases, the effect of the wall joint on
vibrational isolation will be more effective.
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APPENDIX: NOMENCLATURE

Cs fluid acoustic free wave speed
Cy, shell extension phase speed
D membrane stiffness

E Young’s modulus

FL fluid loading term

shell-wall thickness
< =1

J,0 Bessel function of order n
ko free wavenumber
ks axial wavenumber
kY radial wavenumber
L length of the joint
M, bending moment of the shell wall
N, axial force

circumferential modal number
Prruia power in the contained fluid
Pyenr power in the shall wall
Poai power in the system
P power flow by the incident wave
Pr power flow by the reflected wave
P! power flow by the transmitted wave
R shell mean radius
s branch number of the waves
S number of the considered waves
Sy transverse shear force
T, torsional shear force
Tr power transmission

u, v, w shell displacements
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x, 0, r cylindrical co-ordinate

o, @ characteristic vectors

Pr density of fluid

Os density of shell

u Poisson’s ratio

w circular frequency

Q non-dimension frequency

A non-dimension wavenumber
Superscripts

a, b, ¢ discontinuity sections

irt incident, reflected, transmitted
* complex conjugate

’

differentiation
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