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A #uid-"lled cylindrical shell comprising a wall joint is investigated by using the
concept of vibrational power #ow. The power #ow in the contained #uid and in the
shell wall of this #uid-"lled elastic cylindrical shell is studied. The transmission loss
of vibrational power #ow through the wall joint is studied and an analysis of power
#ow transmission and re#ection at the joint in #uid-"lled shells is presented.
Material sti!ness of the joint and frequency are two important factors that are
found to strongly in#uence the results. It is hoped that the analysis will shed some
light on the control of vibrational propagation in shells "lled with #uid.

( 1999 Academic Press
1. INTRODUCTION

Piping systems conveying #uid are used widely in many defense and industrial
applications. Besides transmitting useful quantities, piping systems often transmit
unwanted energy in the form of structural and acoustical vibrations. Because it can
re#ect a part of the incident wave and thus reduce the amplitude of the transmitted
vibration, the wall joint is commonly used to control noise and vibration in
practical engineering applications. In recent years, the concept of vibrational power
#ow has been widely used to evaluate the capacity of some isolating devices because
it combines both the force and the velocity at the same time. Hence it is
a fundamental topic to predict the in#uence of the wall joint on vibrational power
#ow transmission.

Discontinuities of various forms have been studied by many previous authors.
Wave propagation in shells with a wall joint has been studied by Harari [1]. The
discontinuity considered consists of a spring-type rubber insert and the results
obtained show high power re#ection coe$cients at the cut-on frequencies of
various torsional waves. Harari [2] has also investigated the related problem of
travelling waves encountering a ring sti!ener attached to the shell wall. Fuller [3]
has investigated the e!ects of discontinuities in the wall of a cylindrical shell in
vacuo on travelling #exural waves. Xu et al. [4] studied not only the amplitude, but
also the angle of the re#ection coe$cient.

Due to the coupling between the structure and the #uid, it is much more di$cult
to investigate #uid-"lled shells. During recent years, a lot of attention has been paid
to coupled #uid-shell systems. Fuller and Fahy [5] performed an analysis
0022-460X/99/280395#16 $30.00/0 ( 1999 Academic Press



396 M. B. XU E¹ A¸.
of dispersion curves and energy distributions between the shell and the contained
#uid for a single-mode travelling with circumferential modal number n"0, 1
in a #uid-"lled elastic pipe. The problem of mechanical excitation of the shell
wall has also been considered in a paper by Fuller [6], in which the input mobility
and energy distributions in a #uid-"lled in"nite cylindrical shell were evaluated for
line and point-driving forces applied to the shell wall. The propagation of
vibrational waves through wall discontinuities in a water-"lled shell has been
considered by Xu et al. [7]. The results were also compared with those of a shell in
vacuo.

In this paper, an analysis of wave transmission and re#ection at the wall joint in
#uid-"lled shells is presented. Because re#ection of the wall joint is the main reason
for reducing wave propagation in this article, the damping of the joint material is
ignored. The power transmission is used to evaluate the role of the joint. The results
in this paper provide theoretical guidance on reducing noise and vibration in piping
systems conveying #uid.

2. FREE WAVE PROPAGATION OF THIS COUPLED SYSTEMS

The co-ordinate system and the modal shapes are shown in Figure 1.
The vibrational motion of the shell can be described by the FluK gge shell equations
as
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Figure 1. Co-ordinate system and modal shapes.
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In these equations, u, v and w are shell displacements in the x, h and r directions,
respectively, R is the shell mean radius, h is the shell thickness, k is the Poisson
ratio, o is the density of the shell material, E is the Young's modulus,
()
x
"R(L()/Lx), ()h"L( )/Lh, ( )

t
"L( )/Lt , K is the thickness factor, K"h2/12R2,

p
f

is the pressure of the contained #uid.
The solutions of equation (1), in discrete form, can be expresed as
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The associated form of the pressured "eld in the contained #uid, which satis"es
the acoustic wave equation, is given as
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when n is the circumferential modal number, s denotes a particular branch of the
dispersion curves, u is the driving frequency, J

n
( ) is Bessel function of order n.

k
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are the axial and radial wavenumbers, respectively. The radial
wavenumber kr
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is related to the axial wavenumber k
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by the usual vector relation
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are the wave speed in the shell and in the #uid, respectively.
Application of the #uid momentum equation at the shell wall, r"R, results in
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where o
f

is the density of the contained #uid and the prime denotes di!erentiation
with respect to the argument kr

s
R.

Substitution of equations (2)}(4) into the shell equations (1) results in the
equations of motion of the coupled system in symmetric matrix form:
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where F¸ is the #uid loading term due to the presence of the #uid acoustic "eld and
is given by
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Expansion of the determinant of the amplitude coe$cient in equation (5)
provides the system characteristic equation

P
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(j)F¸"0, (9)

where both P
1
(j) and P

2
(j) are polynomial. For the sake of brevity, the coe$cients

are not given here.
Due to the &&non-linearity'' of the equation, numerical methods have to be

employed to "nd the desired eigenvalues. The eigenvalues will be either pure real,
pure imaginary or complex. The pure real and imaginary roots can be found by the
method of bisection. Newton's downhill method and the plane grille searching
method are combined to "nd the complex roots. For each circumferential modal
number n, these wavenumbers j can be separated into two groups. The "rst group
contains backward waves associated with a semi-in"nite shell, !R(x(0 (left
side), excited at the edge at x"0. The second group describes forward waves
associated with a semi-in"nite shell, 0(x(R (right side), excited at the edge at
x"0. If j is pure real or pure imaginary, one obtains a near-"eld wave or
a propagating wave, respectively. If j is complex is conjugate pairs, one obtains an
atenuated standing wave, which means that the wave amplitudes decay in one
direction but the waves propagate in both directions.

By substituting the roots back into equation (5), the characteristic vectors are
obtained as
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As n"0, the torsional mode of the shell is uncoupled from all other motions and
has been omitted. U

ns
and W

ns
characterize the particular type of wave motion,

giving the ratio of longitudinal and circumferential displacements to the #exural
displacement.

3. POWER FLOW IN THIS COUPLED SYSTEM

When waves propagate through this #uid-"lled shell, there will be vibrational
power #ow in the shell wall and the contained #uid.

3.1. POWER FLOW IN THE CONTAINED FLUID

The #uid "eld can be described by the usual pressure solution in cylindrical
coordinates for a particular circumferential mode n as
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where S is the total number of propagating waves.
The axial acoustic particle velocity can be obtained from the momentum relation

v
x
"

!1
io

f
u

Lp
Lx

. (12)
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Acoustic power intensity in the axial direction is expressed as
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where * denotes the complex conjugate.
Then the total power #ow in the contained #uid P

fluid
is obtained by integrating

the power intensity given by equation (14) #owing through an element of area
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dA"r dh dr over the cross-sectional area of the #uid "eld. The power #ow P
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where g
n
"2 when n"0, and g

n
"1 when n'0.

As discussed in section 2, by application of the boundary condition at the shell
wall, the power in the contained #uid can be written in terms of the shell radial
amplitude=

ns
. Substituting equation (4) into equation (16) result in
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The integral in equation (17) takes the form of Lommel's integral, the solution of
which can be written as [8]
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Then the power #ow in the contained #uid can be obtained easily.

3.2. POWER FLOW IN THE SHELL WALL

When there are propagating waves in this #uid}shell system, there will exist four
forces of the cylindrical shell section in the axial direction. These forces for
a particular circumferential mode n can easily be derived from the exact FluK gge
shell equations as
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is the amplitude of the #exural displacement, N
x
, ¹

x
, S

x
and M

x
are the

axial force, torsional shear force, transverse shear force and bending moment in the
x direction, respectively, and can be written as

N
ns
"

D
R

[/
ns
j
ns
#knu

ns
#k!Kj2

ns
],

¹
ns
"

D
R

(1!k)
2

[!n/
ns
#(1#3K)u

ns
j
ns
#3Knj

ns
],

S
ns
"

D
R

K[(j3
ns
!kn2j

ns
!/

ns
j2
ns
!knu

ns
j
ns
)

!(1!k)(2n2j
ns
#1

2
n2/

ns
#3

2
nu

ns
j
ns
)],

M
ns
"DK[j2

ns
!kn2!/

ns
j
ns
!knu

ns
],

K"

h2

12R2
, D"

Eh
(1!k2)

.

The power #ows in the shell wall at the section, transmitted by these forces, are
given as
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Then the total power in the shell wall is
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3.3. TOTAL POWER FLOW IN THE COUPLED SYSTEM

When waves propagate through this coupled system, the total power #ow is the
sum of the power both in the shell and in the contained #uid. Then,
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4. THE EFFECT OF WALL JOINT ON THE POWER PROPAGATION

The shell conveying #uid with a wall joint is shown in Figure 2. The material of
the shell is steel, the wall joint is made of hard rubber, and the #uid is water. When
there is an incident propagating wave in region (a), the joint will re#ect some power
carried by the incident wave, and thus the power carried by the transmitted wave in
region (c) is less than the incident power in region (a) and the vibration can be
reduced. All local e!ects of a discontinuity in wall thickness such as local stress
concentrations are ignored. This approximation is justi"ed by the initial
assumption that the wall thickness is very small compared to the shell radius and
the thickness parameter is retained only in #exural terms of the characteristic
equation.

The discontinuity is to be analyzed by dividing the shell into sections as in Figure
2 and considering wave propagation and re#ection in each. The wave incident on
the joint is assumed to be a propagating wave s"1 for various values of
circumferential mode n. Theoretically, a single incident wave of mode order n will
generate in"nite re#ected waves or (and) transmitted waves in regions (a)}(c) with
an identical mode order. The boundary conditions (BC) at each discontinuity in the
wall of the shell will include the continuity of angular bending velocity, radial, axial
and tangential velocity, and the continuity of angular bending moment, transverse
shear, axial force and torsional shear. In the -uid, BC will include the continuity of
pressure p and axial velocity v

x
at every point of the interfaces A and B. Thus the

number of BC will be in"nite in theory and cannot be satis"ed in reality.
To the vibration waves, only the lower order types will be considered. That is, all

the propagating waves and attenuated standing waves will be included. As for the
near-"eld waves, only those with small wavenumbers will be included.

The BC in the shell wall and the mean value of p and v
x
in the contained -uid will

be included "rst. The continuity of p and v
x

at some points of the interface A and
B (for example r"0, r"0)5R) will also be included as boundary conditions. Then
the problem will arise as to how many waves and BC have to be considered on
earth. When an incident propagating wave is re#ected by the joint, the vibrational
power #ow carried by the incident wave will convey into the power #ow carried by
the re#ected and transmitted waves. Moreover, the incident power will be equal to
Figure 2. Arrangement of the wall joint.
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the sum of the re#ected and the transmitted power. According to the principle of
energy conversation, we can decide the number of waves and BC.

At interfaces A and B, for example, the continuity of radial velocity of the shell
wall provides an equation
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where the amplitude of the incident wave is assumed to be unity and S is the total
number of considered waves; superscripts a, b and c refer to the corresponding
sections shown in Figure 2; i, r and t refer to the incident wave, re#ected waves and
transmitted waves, respectively.

Similarly, by applying other boundary conditions at both interfaces A and B,
other equations can be provided and an equation group containing 4]S equations
will be obtained. The 4]S unknown complex coe$cients of the 4]S equations
were set into a 4S]4S matrix and the unknown Fourier amplitudes were then
evaluated. Thus the main amplitude of each considered wave was obtained.

Then the power #ows carried by the incident wave, transmitted waves and
re#ected waves can be calculated. The vibrational power #ow carried by the
re#ected and the transmitted waves is de"ned as

Pr"
S
+
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total

, (25)
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S
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The power carried by the incident wave is

Pi"Pia
total

. (27)

If the di!erence between Pt#Pr and Pi is small, the results will be correct; if
otherwise, more waves and BC have to be considered until the di!erence is small. In
engineering, the frequency of the wave cannot be too high, and hence it is
unnecessary to consider too many waves and BC.

The power transmission is used to investigate the e!ect of the wall joint and is
de"ned as

¹r"Pt/Pi. (28)
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5. RESULTS AND DISCUSSIONS

A shell conveying #uid with a wall joint is considered. The incident vibration
wave is assumed to be the "rst propagating wave s"1. The material of the shell is
stell. The parameters of the shell are: the poisson ratio k"0)3, Density
o
s
"7800 kg/m3, Young's modulus E"1)92]1011 N/m2, mean radius R"0)1 m,

thickness h/R"0)05, the wave speed in the shell C
L
"5200 m/s. The contained

#uid is water, the wave speed C
f
"1500 m/s, and the density o

f
"1000 kg/m3.

Several kinds of wall joints, with variations of Young's modulus E, thickness h
2
/R

and length ¸/R, are investigated. The parameters of these wall joints are given in
Table 1.

The results and discussion about the dispersion curves of a #uid-"lled shell had
been given in reference [5] and not given here for the sake of brevity. Hence only
the e!ect of the wall joint on the power #ow transmission is given in this part.

5.1. THE EFFECT OF n"0 ON THE TORSIONAL WAVE

When n"0, torsional motion is uncoupled, and so the e!ect on the shell "lled
with water will be the same as that of a shell in vacuo. See reference [4].

5.2. THE EFFECT OF n"0 ON THE COUPLED WAVES

5.2.1. The power transmission with variations of Young+s modulus E of the joint
In order to evaluate the in#uence of Young's modulus E on the power #ow

propagation, a shell with joint A, B or C is studied. The results of power
transmission are plotted in Figure 3.

Some conclusions can be drawn. No matter what value Young's modulus E of
the joint is, ¹r"f (u) is a periodic function, which means that the ¹r will decrease
and increase periodically with an increase in frequency u. When frequency u is very
low, the joint hardly re#ects the incident propagating wave and thus the power #ow
can transmit without loss, that is, ¹r+1)0 in the frequency region. But with an
increase in frequency u, ¹r will decrease rapidly, which means that the wall joint
TABLE 1
Parameters of the wall joints

Joint E(N/m2) h
2
/R ¸/R o(kg/m3) k

Joint A 2)0]109 0)05 2)0 1100)0 0)4
Joint B 4)0]109 0)05 2)0 1100)0 0)4
Joint C 1)0]109 0)05 2)0 1100)0 0)4
Joint D 2)0]109 0)1 2)0 1100)0 0)4
Joint E 2)0]109 0)025 2)0 1100)0 0)4
Joint F 2)0]109 0)005 1)0 1100)0 0)4
Joint G 2)0]109 0)005 4)0 1100)0 0)4



Figure 3. Power transmission ¹r with variation of the Young's modulus of the joint. E. n"0
2222 Joint A; * } } * Joint B: } } } } Joint C.
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plays a more important role in reducing the incident vibration. This can be
explained by the following reasons. The assumed incident wave s"1 is a #uid-type
wave in low frequency, the vibrational energy of which is contained mainly in the
#uid and the #uid-"lled shell vibrates in dominantly #uid motion. Thus the wall
joint (structural discontinuity) hardly re#ects this incident propagating wave in this
frequency region. With the increase in frequency, the vibrational energy of the
incident wave s"1 will be contained both in the #uid and in the shell wall. Thus
the wall joint will re#ect the incident wave and ¹r will decrease rapidly. By
comparing di!erent values of Young's modulus E, it can be found that with
a decrease in Young's modulus E, the period of function ¹r"f (u) will decrease
and the mean value of ¹r will decrease also. This can be explained by the relative
sti!ness of the shell and the wall joint. As the Young's modulus E of the wall joint
decreases, the sti!ness di!erence between the shell and the joint will increase. Thus
the wall joint will re#ect the incident power more e!ectively and ¹r will decrease
too.

5.2.2. ¹he power transmission with variations of the thickness h
2
/R of the joint

The results of joints with di!erent values of joint thickness are plotted in
Figure 4. It can be concluded that the e!ect of the thickness h

2
/R on the ¹r is

similar to that of the Young's modulus E. For the sake of brevity, the results are not
discussed further. By comparing Figure 4 with Figure 3, It can be seen that the
results of joints B and C are almost the same as those of joints D and E, respectively.

This can be explained by the de"nition of membrane sti!ness D. Since
D"Eh/(1!k2),

E
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h
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R
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"1)0]109,

h
Joint~C

R
"0)05,



Figure 4. Power transmission ¹r with variation of joint thickness h. n"0. 2222 Joint A;
* } } * Joint D; } } } } Joint E.

Figure 5. Power transmission ¹r with variation of joint length ¸. n"0. **** Joint A;
* } } * Joint F; } } } } Joint G.
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E
Joint~D

"2)0]109,
h
Joint~D

R
"0)1, E

Joint~E
"2)0]109,

h
Joint~E

R
"0)025,

so D
Joint~B

"D
Joint~D

and D
Joint~C

"D
Joint~E

, the results of Joint B and C are
almost the same as those of joints D and E, respectively.

5.2.3. ¹he power transmission with variations of length ¸/R of the joint

The results with variations of length ¸/R are given in Figure 5. ¹r"f (u) is also
a periodic function. By comparing the results of joints A, F and G, it can be seen
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that the period of the function ¹r"f (u) will double if the length ¸/R of the joint
decreases from 2)0 to 1)0, and period will be half if the length ¸/R increases from 2)0 to
4)0. This means a longer joint should be chosen if the driving frequency region is wide.

5.3. THE EFFECT OF n'0 ON THE COUPLED WAVES

When n"1, in order to study the e!ect of Young's modulus E, thickness h
2
/R

and length ¸/R, the power transmission of joints A,B,C, D,E,F and G are plotted
in Figures 6}8. The results are similar to those of n"0 and thus not discussed
further for the sake of brevity.
Figure 7. Power transmission ¹r with variation of joint thickness h. n"1. 2222 Joint A;
* } } * Joint D; } } } } Joint E.

Figure 6. Power transmission ¹r with variation of the Young's modulus of the joint. E. n"1
2222 Joint A; * } } * Joint B: } } } } Joint C.



Figure 8. Power transmission ¹r with variation of joint length ¸. n"1. **** Joint A;
* } } * Joint F; } } } } Joint G.
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However, an evident di!erence exists between n"0 and n'0 when the driving
frequency is very low. For the breathing mode n"0, the wall joint hardly re#ects the
incident propagating wave and thus ¹r"1)0 in this frequency region; for other
modes (n'0), the wall joint re#ects the incident propagating wave and thus ¹r(1)0
in the same region. This di!erence is due to the characteristics of the incident
propagating wave. For the breathing mode n"0, there are two propagating waves
at low frequencies; the energy of the "rst wave s"1 is contained in the #uid, while
the energy of the second wave s"2 is concentrated in the shell wall. In the analysis,
the incident wave is assumed to be the "rst wave s"1, and thus the joint in the shell
wall hardly re#ects the incident wave s"1 and ¹r"1)0 in this frequency region. For
the modes n'0, the incident propagating wave s"1 is largely in the form of shell
wall vibration, and so the wall joint plays an important role in the controlling of the
incident vibration propagation and ¹r(1)0 in the same region.

6. CONCLUSIONS

The power transmission associated with the incident vibrational wave s"1
impinging on various joints in the wall of a #uid}"lled cylindrical shell has been
studied. From the above discussion, a conclusion can be drawn that the geometry
and physical parameters of the wall joint have signi"cant e!ects on the vibrational
power #ow transmission and re#ection in a #uid-"lled shell. When the di+erence of
parameters between the joint and the shell increases, the e!ect of the wall joint on
vibrational isolation will be more e!ective.
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APPENDIX: NOMENCLATURE

C
f

#uid acoustic free wave speed
C

L
shell extension phase speed

D membrane sti!ness
E Young's modulus
F¸ #uid loading term
h shell-wall thickness
i J!1
J
n
0 Bessel function of order n

k
0

free wavenumber
k
ns

axial wavenumber
kr
s

radial wavenumber
¸ length of the joint
M

x
bending moment of the shell wall

N
x

axial force
n circumferential modal number
P
fluid

power in the contained #uid
P
shell

power in the shall wall
P
total

power in the system
Pi power #ow by the incident wave
Pr power #ow by the re#ected wave
Pt power #ow by the transmitted wave
R shell mean radius
s branch number of the waves
S number of the considered waves
S
x

transverse shear force
¹

x
torsional shear force

¹r power transmission
u, v, w shell displacements
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x, h, r cylindrical co-ordinate
/, u characteristic vectors
o
f

density of #uid
o
s

density of shell
k Poisson's ratio
u circular frequency
X non-dimension frequency
j non-dimension wavenumber

Superscripts

a, b, c discontinuity sections
i, r, t incident, re#ected, transmitted
* complex conjugate
@ di!erentiation
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